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Lithium and magnesium organotellurolates were reacted with lactones producing the corresponding tell-
urocarboxylic acids. Treatment of the reaction mixture with lithium aluminum hydride allowed the iso-
lation of the corresponding hydroxytellurides in a one-pot operation.
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One of the most expressive characteristics of chalcogenolate
anions is their soft nucleophilicity and low basicity.1 The lithium,
sodium, and magnesium chalcogenolates are able to undergo
SN2-type reactions in the presence of acidic functionalities, for
example, alcohols,2 allowing the incorporation of the chalcogen
moiety into organic substrates. This property of the metal chalco-
genolates associated with their peculiar reactivity has been ex-
plored in the preparation of multi-functionalized chalcogen
compounds, which can be submitted to further transformations
based on the rich chalcogen chemistry.3,4

For many years we have been devoting our attention to the
chemistry of organotellurides,5 and more recently we became
especially interested in applying these compounds as starting
materials for natural product synthesis, exploring their inherent
chemical properties.6

Organotellurium entities present a dual reactivity, that is, in
metal organotellurolates the tellurium atom behaves as a soft
nucleophile and in diorganotellurides it is attacked by nucleo-
philes, especially organolithiums, generating a new anionic center
at the carbon atom where the tellurium atom was originally at-
tached. This concept has been applied by us in the preparation of
functionalized organolithium reagents by Te/Li exchange, and
other organometallics by further transmetallation of the originally
obtained organolithiums.5,6 These organometallics have been used
in the synthesis of bioactive compounds.6,7

In this work, taking advantage of the high soft character of the
metal organotellurolates, we performed SN2-type lactone ring-
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opening reactions by lithium organotellurolates,8 aiming to obtain
multifunctional building blocks with potential application in or-
ganic synthesis.

The most practical method to prepare metal tellurolates, which
has been extensively employed by us in recent years, is the direct
reaction of an organolithium or Grignard reagent with elemental
tellurium in THF at room temperature, so avoiding the manipula-
tion of bad-smelling alkaneditellurides.8

Reaction of metal organotellurolates with lactones in THF under
reflux gave the corresponding tellurocarboxylic acids.9 Treatment
of the reaction mixture with lithium aluminum hydride led to
the corresponding hydroxytellurides in a one-pot operation10

(Scheme 1).
Initially, screening was carried out looking for the best nucleo-

philic tellurium species for the lactone ring opening of the c-buty-
rolactone 1a (Table 1).

As can be seen in Table 1, n-butyltellurol, the supposed nucleo-
philic tellurium species resulting of the reaction of lithium n-butyl-
tellurolate with a proton source, failed to react with lactone 1a
even at long reaction times under reflux (Table 1, entries 1–3). So-
dium n-butyltellurolate generated in situ by reacting the bad-
smelling n-dibutylditelluride with sodium borohydride in THF
gave the desired product in 42% isolated yield (Table 1, entry 4).
Two equivalents of sodium n-butyltellurolate increased the yield,
but not satisfactorily (Table 1, entry 5). On the other hand, when
lithium n-butyltellurolate, prepared from elemental tellurium
and n-butyllithium in THF, was reacted with 1a, compound 4a
was isolated in 80% yield after 9 h under reflux (Table 1, entry 6).
Use of 1.5 and 2.0 equiv of the nucleophile did not improve signif-
icantly the product yield (Table 1, entries 7 and 8). The magnesium



Table 2
Tellurocarboxylic acids prepared by lactone ring opening

Entry RTeM (reaction time, h) Lactone

1 nBuTeLi (2a) (9)

OO

1a

2 C6H5TeMgBr (2b) (10)

3 2a (8)

OO

1b 

4 o-Me-C6H4TeMgBr (2c) (10)
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Scheme 1. Lactone ring opening by metal organotellurolates and reduction of the obtained carboxylate to the corresponding alcohol.

Table 1
Influence of the metal butyltellurolate in the ring-opening reaction of the
c-butyrolactone 1a

O

O O

OH
nBuTe

nBuTeM

4a1a

Conditions

Entry nBuTeM (equiv) Conditionsc t (h) Yield of 4a (%)

1 nBuTeLi (1.0)a THF/H2O 24 —
2 nBuTeLi (1.0)a THF/EtOH 24 —
3 (nBuTe)2 (0.5)a EtOH/NaBH4 24 —
4 (nBuTe)2 (0.5) THF/NaBH4 12 42
5 (nBuTe)2 (1.0) THF/NaBH4 12 55
6 nBuTeLi (1.0)a THF 9 80
7 nBuTeLi (1.5)a THF 9 86
8 nBuTeLi (2.0)a THF 8 88
9 nBuTeMgBr (1.5)b THF 10 82

a Generated by reacting elemental tellurium with n-butyllithium.
b Generated by reacting elemental tellurium with n-butylmagnesium bromide.
c Reactions performed at room temperature gave 4a in low yields.
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n-butyltellurolate presented reactivity similar to that of the lith-
ium analog (Table 1, entry 9).

Use of HMPA or 18-crow-6 ether did not improve the yields.
With these results in hands the best reaction conditions were ap-
plied to other lactones and metal organotellurolates. Table 2 sum-
marizes the results obtained.

Lithium and magnesium organotellurolates reacted with five,
six, and seven-member ring lactones in moderate to good yields
(Table 2, entries 1–8). Some 4-substituted five-member ring lac-
tones (Table 2, entries 7–10) were also reacted with metal
organotellurolates. Albeit lactone 1d underwent reaction with
both lithium and magnesium tellurolates in good yields (Table
2, entries 7 and 8), the more sterically hindered homologous 1e
and 1f failed to react in the same conditions (Table 2, entries 9
and 10).

As mentioned before, we are interested in developing functional-
ized tellurides aiming their use in the synthesis of biologically active
compounds. In this context, we developed extensive studies on the
preparation of C,O-dianions from hydroxytellurides.6,7 As an exten-
Product Yielda (%)

n-BuTe

O

OH

4a 
86

C6H5Te

O

OH

4b 
78

n-BuTe

O

OH
4c 

88

o-MeC6H4Te

O

OH

4d 

77

n-BuTe
OH

O
4e 

60

p-MeOC6H4Te
OH

O
4f 

68
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Table 2 (continued)

Entry RTeM (reaction time, h) Lactone Product Yielda (%)

7 2a (10)

OO

1d 

n-BuTe
OH

O
4g 

80

8 2c (11) o-MeC6H4Te
OH

O
4h 

68

9 2a (24)
OO

3

1e 41 

—

10 2a (24)

OO C6H5

1f 
n-BuTe

OH

O

C6H5

4j 

—

a Isolated yields.

Table 4
Hydroxytellurides prepared

Entry RTeM (reaction time, h) Lactone Product Yielda (%)

1 2b (15) 1a
C6H5Te OH

4
5a

65

2 2a (15) 1a
n-BuTe OH

4
5b 

72

3 2a (15) 1b
n-BuTe OH

5
5c 

75

4 2a (20) 1c
n-BuTe OH

6
5d 

50
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sion of these studies it would be interesting to transform the organyl
tellurocarboxylic acids 2 into hydroxytellurides 5 (Table 3).

To this end, initially several reducing agents were tested to
transform 3 into 5c, as shown in Table 3.

Stoichiometric or excess amounts of sodium borohydride under
reflux gave the hydroxyl telluride 5c in only modest yields (Table 3,
entries 1 and 2). Under similar conditions the use of DIBAL-H led to
the desired product in better yields (Table 3, entries 3 and 4). How-
ever lithium aluminum hydride gave the best results (Table 3, en-
tries 5–7) allowing the preparation of 5c in a one-pot process in
75% yield when 0.8 equiv of LiAlH4 was used. When higher
amounts of LiAlH4 were used lower yields were obtained (Table
3, entries 5 and 6).

The conditions employed for entry 7 (Table 3) were applied in
the preparation of hydroxytellurides 5a–5e as presented in Table 4.

Only moderated yields were achieved in the reaction of lactones
1c and 1d with lithium n-butyltellurolate (Table 4, entries 4 and 5).
By using phenyltelluro magnesium bromide as the nucleophile in
the reaction with lactone 1a compound 5a was obtained in 65%
isolated yield, after treating the reaction medium with LiAlH4 (Ta-
ble 4, entry 1). The carboxylate, produced by opening c-valerolac-
Table 3
One-pot reduction of carboxylates to the corresponding alcohols

nBuTe OH

nBuTe OLi

O

Te0

nBuLi

[nBuTeLi]

THF, reflux

1b

5c

3

reducing agents

O

O

Entry Reducing agent (equiv) Reaction time (h) Yield (%)

1 NaBH4 (1.0) 12 30
2 NaBH4 (1.5) 12 36
3 DIBAL-H (1.0) 5 52
4 DIBAL-H (1.5) 5 60
5 LiAlH4 (1.0) 8 65
6 LiAlH4 (1.5) 5 50
7 LiAlH4 (0.8) 8 75

5 2a (17) 1d n-BuTe
OH

3
5e 

58

a Isolated yields.
tone1b with 2a, was reduced in situ to the corresponding alcohol 5c
in 75% isolated yield (Table 4, entry 3).

As mentioned before, the Te/Li exchange reaction is one of the
most synthetically useful reactions of the organotellurium com-
pounds. In view of this fact, we submitted the prepared hydroxy-
tellurides to the reaction conditions for this transformation. The
hydroxytellurides 5b and 5c were treated with n-butyllithium
in THF and then octanal (6) was added to the reaction mixture.
In the case of compound 5b, the diol 7a was obtained in 75%
yield. Under the same reaction conditions 5c failed to react, being
recovered unchanged on the work-up. When 5c was transformed
into the corresponding THP ether, the Te/Li exchange was suc-
cessful, leading to compound 7b in 69% yield on reaction with 6
(Scheme 2).
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Scheme 2. Te/Li exchange reaction and capture of the corresponding organolithium
with 6.
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Finally, it must be pointed out that all the organotellurides pre-
pared in this work, except dibuylditelluride and dibutyltelluride,
are not bad smelling and are stable to air and light.

In conclusion, a practical method to prepare organotellurocarb-
oxylic acids in a single operation has been developed by using in
situ-generated metal organotellurolates in a SN2-type reaction
with lactones. In addition, the intermediate organyl telluride car-
boxylates can be directly reduced to the corresponding hydroxyl
tellurides, which are synthetic equivalents of the corresponding
organolithiums by Te/Li exchange reaction.
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